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Section I: Answer any four and each question carries 6 marks.

1. Prove QR-decomposition for full column rank matrices and prove the decom-
position is unique if R is required to have positive entries on the diagonal.

Solution: Let A be an m x n matrix with m > n and rank of A is n. Let q;
be the ith column of A. Then {a,...,a,} is a linearly independent set in R™.

Let < ui,ag >
Uy = ay, Uz = Wula (1)
L <, a >
L. O
k=1 k
Let €; = m for all i < i < n. Then {é,...,€6,} is an orthonormal set, such

that span{é, ..., €,} = span{ay, ...,a,}. Let Q = [é;.....€,]. Then @ is an m xn
orthogonal matrix.

< e, ar > < eg,ag > ... €1,y >
Lot B — 0 < €y,09 > ... < €9,0, >
0 0 v < €p,Qp >
Then A = QR.

Now we show that the ) R-decomposition is unique if R is required to have
positive entries on the diagonal. Let

A= QlRl = Q2R2-

Now
Rthl = R§Q§Q1R1 = (QlRl)thRl = A'A.

Similarly, RERs = A'A. Now

RoRy' = (Ry) 'Ry = (ReRy 7))



Ry R is upper triangular and ((Ro Ry 1))~ is lower triangular. Hence RyR; " =
D, where D is a diagonal matrix. But again D = (D*)~! = D™, which implies
that D is the identity matrix. Hence R; = Ry and consequently Q)1 = Q)s.

. If A = UDV" is the singular value decomposition, prove that Az = b has a
solution if and only if b L U; for all 1 > k where k is the rank of A.

Solution: Let oy, 09, ... , 0} be the singular values of A. Then the non-zero
entries of the diagonal matrix D are oy, 09, ... , 0} respectively.
Now

Ar=b& UDV'zx =b s DV'z = U'b.

As D is a diagonal matrix with first £ entries being non-zero and

< Uy, b>
< Uy, b>
Utb = ) ,

< Up,b>
it follows that Az = b has a solution if and only if b L U; for all ¢ > k.

. Prove that Spr(A) has algebraic multiplicity one for a nonnegative irreducible
matrix A.

Solution: Let r =Spr(A) and ¢(\) = det(A] — A), where [ is the identity
matrix. it is enough to show that ¢'(r) # 0. Let (A — A)y be the matrix
obtained from (A — A) by deleting kth row and /th column. Let
cij(N) = (=1)"det[(A — A)y] Vi, 5.
Let ¢(A) = (¢i;(A)). Then
(AL — A)c(N] = (M) = c(N)(A — A).
Differentiating with respect to A\, we get
NN — A) +¢(X) = ¢'(N)].
Putting A = r, we get

dr)(rl — A)+c(r) = ¢'(r)1.



Ay On-1x1
Let T =
(lenl 0
row and nth column.Then T > 0 and A > T. Moreover T is not irreducible.

Hence T' # A. Since A > T, r =Spr(A) >Spr(T) and (rI — T) is one-one.
Therefore, ¢(r) # 0. Let u € Cy N B such that A(u) = ru. Now

d(r)(rl — A)(u) + c(r)u = ¢'(r)I(u)
= c(r)(u) = ¢'(r)(u)
= Z c(r)nju; = @' (r)uy.
We have u € Cy N B and A(u) = ru, which implies that
(rI — A)e(r) = ¢(r)I = Opxn.

, where A; is obtained from A by deleting the nth

Hence (11 — A)c; = 0, where ¢; is the jth column of ¢(r). So, A(c;) = re; for all
j. Therefore, all column vectors of ¢(r) are eigenvectors of A corresponding to
the eigenvalue r. Since the eigenvalue r has geometric multiplicity 1, it follows
that each column of ¢(r) is a multiple of w.

Now A! is also non-negative and irreducible and Spr(A) = Spr(A*) = r. There
exists v € B such that A*(v) = rv and v; > 0 for all i. It follos as above that all
rows of ¢(r) are constant multiples of v. Therefore, ¢(r)! is a non-zero vector
with all components having same sign. Hence

chj(r)uj #0 (u; #0).

Then it follows that (¢(r)u), # 0. So, ¢'(r)u = ¢(r)u # 0, which implies that
¢'(r) # 0.

. Solve by simplex method

Maximize 9x1 + 1024
subj r1+ 225 <8
51’1 + 21’2 S 16
x> 0.

Solution: Starring with the initial simplex tableau and applying simplex method,
we get

T Ty T3 T4 <

1 2 1 0 0] 8

) 2 0 1 016 (3)
-9 =10 0 0 1] O




Applying the operation %Rl we get

T i) T3 T4 <
1/2 1 1/2 0 0| 4 ()
5 2 0 1 0|16
-9 -10 0O 0 1] 0
Then applying Ry — 2Ry and R3 + 10R;, we get
I T2 T3 T4 <
/2 1 1/2 0 0] 4 (5)
4 0 -1 1 0] 8
-4 0 5 0 11]40
Again %RQ gives
I ) T3 Ty <
/2 1 1)2 0 0] 4 (6)
1 0 —1/4 1/4 0| 2
-4 0 ) 0 1140
Then applying R; — %RQ and Rs + 4R, we get
1 T2 xT3 Ty <
0o 1 5/8 1/8 0] 3 (7)
1 0 —-1/4 1/4 0| 2
0 0 4 1 1148

Hence the optimal solution is 1 = 2, x5 = 3 and the maximum value is 48.

. Solve the following game: Ruby conceals either a Rs. 1 coin or Rs. 2 coin in
her hand; Charm guesses 1 or 2, winning the coin if he guesses the number.

Solution: The matrix corresponding to this game is

a b 10
a= ()= 2)
. Therefore, it does not have any saddle point, so it is a non-strictly determind

game. Hence the optimal strategies are given by, p* = (p}, p)' and ¢* = (¢}, ¢3)",

where
. d—c 2
="y —(c—a)~ 3




. a—b 1
Pm Ty —(c—a) 3
. d—b 2
N= =t —(c—d) 3
. a—c 1
LT —(c—ad) 3

6. Prove the existence and uniqueness of minimum norm least square solution to
Ax =b.

Solution: Let A be an m X n matrix and A = UDV" be a singular value
decomposition of A. D = diag(oy,...,0,), r = p(A). Then the minimum

norm least square solution to Az = b is given by & = VDV U', where DT =
dz'ag(ail,... L),

70—7‘

|[Az — b||* = |[UDV'z — b||* = || DV'z — U'b||?
. Let y = V'a, ¢ = U', then ||y|| = ||z||. Now

Mingegn||Az — b||> = minyegn || Dy — c||*.

1Dy~ = Yo —ef + Y2 2 T
=1

i>r i>r

. Define the vector g as follows: the ith entry is = if + <7 and the ith entry is

0if ¢ > r. Then
1Dy —c|” =) ¢ <||Dy - cl)”

i>T

for all y € R”. Now

1Dy —cllP =D ¢ =y = —%Viéril\yHEHEH-
i>r i

Hence the proof of existence and uniqueness.

Section II: Answer any two and each question carries 13 marks.

1. (a) Let s; be the i-th singular value of A. Prove that s; < ||A — B|| for any
matrix B with rank (B) < i (Marks: 7).

Solution: Let A be of order p x ¢ and A = VDU* be the singular value
decomposition of A, where D = diag(sy,...,s,;). Let B be a p X ¢ matrix such

5



that rank(B) < 7. Let u; denote the ith column of U and v; denote the ith
column of V. Let
U1 = [Ul, ceey Uy, O, vy 0]

and
‘/1 = [’Uh ...,Ui70, ,0]

Since rank(V;*BU;) <rank(B) < i — 1, there exists ¢ € C? such that ||c|| = 1,
c espan{ey, ..., e;} and
ViBUy(c) = 0

= ch < B(uj), v >=0V1 < k <13
=1

= <B(chuj),vk> =0,1<k <.
=1

Now let x = }_ cjuy, then B(x) L vVl < k <i. We know A = }_ sjvuj
j=1 Jj=1
Then

i
x) = E SICUU U = E $;CV;.
Lj Jj=1

Now '
7 p
1A(z) = B@)| = || > _ sjcjo; — > (B(x),v;) v|
j=1 j=i+1
_Z|S]| le;]* + Z | (B(x), v;) vj]*.
Jj=i+1
Hence

1A(z) = B(2)]] = si.

As x =) cju; and ||c|| = 1, it follows that ||z|| = 1. Hence s; < [|A — B]|.
=1

, use Perron-Frobenius theory to compute lim,, ., A™.

(b) For A =

Wi O
O wiroro|—=

WlwWIi= O

Solution: A is a primitive (since A? is a positive matrix) and stochastic matrix.
So, 1 is the dominant eigenvalue for A and A* as well. Also let v = (1,1,1)"



and v = (1/4,3/8,3/8). Then it is easy to see that A(u) = u and A'(v) = v.
We also note that < u,v >= 1. Hence, by perron-Frobenius theory,

1/4 3/8 3/8
lim A" =w' = | 1/4 3/8 3/8
e 1/4 3/8 3/8

P.T.O



2. (a) Let A > 0 be a primitive matrix, v and u be positive eigenvectors for A
and A" with eigenvalue A =Spr(A). If v'v = 1 and r = Spr(A), prove that
(4)" — vu' exponentially (Marks: 6).

Solution: Let M = vu'. Note that
u'M = vulvu' = u'
and
M (v) = vu'v = v.
Now let W =< u >+, Forw € W
<u, A(w) >=< A'(u),w >= \ < u,w >= 0.

Hence A(w) € W and therefore, W is an invariant subspace for A. Also for
we W,
M(w) = vu'w = 0.

Let T be an operator such that T'(w) = A(w) for w € W and T'(u) = 0. Then
Spr(7T) < Spr(A). Let 8 =Spr(7) and € > 0 be such that § + ¢ < A. Then we
know that there exists N € N such that

|T"||*" < B+¢e V¥V n>N.

ie. [T < (B+¢e)" ¥V n>N.
Now for w € W,

1(5) @ii=(3) = (3) i

Lo B+e\"
<Lyr |H|w||s< ) ],

A
which tends to 0 exponentially as n — oo. This implies that (é)n — M = vu!
exponentially, since (£)" (v) = v = M(v).

(b) Let A and B be two matrices such that b;; = a;; + r. Then show that two
strategy vectors p and ¢ are optimal for A if and only if they are optimal for B
and value of the game B is value of game A plus r.

Solution: Let A and B be m X n matrices. For any p = (p1,...,pm)" and
q= (Qh cey QR)a

p'Bq = Z Z bijpiq; = Z Z(aij +r)pig; = p'Ag + 1

i=1 j=1 i=1 j=1

8



Now let p* and ¢* be an optimal strategy for B. Then
pBq* <v(B) <p*"BqV peR" qcR"
Hence by the calculation above,
pAg +r <v(B)<p'Ag+r V peR" qeR",

equivalently,
pAq* <v(B)—r<p*Aq ¥V peR™ geR".

This shows that v(A) = v(B) — r. We have also shown that p* and ¢* is also
an optimal strategy for A as well. By a similar argument as above it can also
be shown that an optimal strategy for A is also an optimal strategy for B.

. (a) Describe and justify a method to avoid anticycling in LP (Marks: 6).

(b) State and prove a necessary and sufficient condition in terms of the matrix
entries for a 2 x 2- matrix game to be non-strictly determined.

Solution: Let A = (ZH Zu) be a 2 X 2 matrix corresponding to a matrix
21 A2

game. The game is non-strictly determind if and only if none of the matrix
entries is a saddle point. We show that if there is a saddle point then the game
is strictly determind, from which the assertion follows. Let a5 be a saddle point.
Then aiy < a1y and ajg > age. Then et Ae; > ajo for j = 1,2 and efAey < ao
for i = 1,2. This shows that v(A) = a;2 with e; and es determining an optimal
strategy.

(c) Solve the n x n-game A = I,, (Marks: 3).

Solution: We claim that p = ¢ = (%, s %)t will provide an optimal strategy
for this game. If r = (rq,...,7,)" is any other vector in R™ with vy + ...+ v, = 1,
then

prAv =< p,v >= —.
n
Similarly,

1
VA =<v,q>= —.
n

This shows that p = ¢ = (%, - %)t defines an optimal strategy for this game

and v(A) = v(I,) = L.



