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Section I: Answer any four and each question carries 6 marks.

1. Prove QR-decomposition for full column rank matrices and prove the decom-
position is unique if R is required to have positive entries on the diagonal.

Solution: Let A be an m × n matrix with m ≥ n and rank of A is n. Let ai
be the ith column of A. Then {a1, ..., an} is a linearly independent set in Rm.

Let
u1 = a1, u2 =

< u1, a2 >

||u1||2
u1, (1)

ui = ai −
i−1∑
k=1

< uk, ai >

||uk||2
uk. (2)

Let ēi = ui
||ui|| for all i ≤ i ≤ n. Then {ē1, ..., ēn} is an orthonormal set, such

that span{ē1, ..., ēn} = span{a1, ..., an}. Let Q = [ē1.....ēn]. Then Q is an m×n
orthogonal matrix.

Let R =


< ē1, a1 > < ē1, a2 > ... ē1, an >

0 < ē2, a2 > ... < ē2, an >
... ... ... ...
0 0 ... < ēn, an >


Then A = QR.

Now we show that the QR-decomposition is unique if R is required to have
positive entries on the diagonal. Let

A = Q1R1 = Q2R2.

Now
Rt

1R1 = Rt
1Q

t
1Q1R1 = (Q1R1)

tQ1R1 = AtA.

Similarly, Rt
2R2 = AtA. Now

R2R
−1
1 = (Rt

2)
−1Rt

1 = ((R2R
−1
1 )t)−1.
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R2R
−1
1 is upper triangular and ((R2R

−1
1 )t)−1 is lower triangular. Hence R2R

−1
1 =

D, where D is a diagonal matrix. But again D = (Dt)−1 = D−1, which implies
that D is the identity matrix. Hence R1 = R2 and consequently Q1 = Q2.

2. If A = UDV t is the singular value decomposition, prove that Ax = b has a
solution if and only if b ⊥ Ui for all i > k where k is the rank of A.

Solution: Let σ1, σ2, ... , σk be the singular values of A. Then the non-zero
entries of the diagonal matrix D are σ1, σ2, ... , σk respectively.

Now
Ax = b⇔ UDV tx = b⇔ DV tx = U tb.

As D is a diagonal matrix with first k entries being non-zero and

U tb =


< U1, b >
< U2, b >

.

.
< Um, b >

 ,

it follows that Ax = b has a solution if and only if b ⊥ Ui for all i > k.

3. Prove that Spr(A) has algebraic multiplicity one for a nonnegative irreducible
matrix A.

Solution: Let r =Spr(A) and φ(λ) = det(λI − A), where I is the identity
matrix. it is enough to show that φ′(r) 6= 0. Let (λI − A)kl be the matrix
obtained from (λI − A) by deleting kth row and lth column. Let

cij(λ) = (−1)i+jdet[(λI − A)ij] ∀ i, j.

Let c(λ) = (cij(λ)). Then

[(λI − A)c(λ] = φ(λ)I = c(λ)(λI − A).

Differentiating with respect to λ, we get

c′(λ)(λI − A) + c(λ) = φ′(λ)I.

Putting λ = r, we get

c′(r)(rI − A) + c(r) = φ′(r)I.
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Let T =

(
A1 On−1×1

O1×n−1 0

)
, where A1 is obtained from A by deleting the nth

row and nth column.Then T ≥ 0 and A ≥ T . Moreover T is not irreducible.
Hence T 6= A. Since A ≥ T , r =Spr(A) ≥Spr(T ) and (rI − T ) is one-one.
Therefore, c(r) 6= 0. Let u ∈ CA ∩B such that A(u) = ru. Now

c′(r)(rI − A)(u) + c(r)u = φ′(r)I(u)

⇒ c(r)(u) = φ′(r)(u)

⇒
∑

c(r)njuj = φ′(r)un.

We have u ∈ CA ∩B and A(u) = ru, which implies that

(rI − A)c(r) = φ(r)I = On×n.

Hence (rI−A)cj = 0, where cj is the jth column of c(r). So, A(cj) = rcj for all
j. Therefore, all column vectors of c(r) are eigenvectors of A corresponding to
the eigenvalue r. Since the eigenvalue r has geometric multiplicity 1, it follows
that each column of c(r) is a multiple of u.

Now At is also non-negative and irreducible and Spr(A) = Spr(At) = r. There
exists v ∈ B such that At(v) = rv and vi > 0 for all i. It follos as above that all
rows of c(r) are constant multiples of v. Therefore, c(r)tn is a non-zero vector
with all components having same sign. Hence

n∑
j=1

cnj(r)uj 6= 0 (uj 6= 0).

Then it follows that (c(r)u)n 6= 0. So, φ′(r)u = c(r)u 6= 0, which implies that
φ′(r) 6= 0.

4. Solve by simplex method

Maximize 9x1 + 10x2
subj x1 + 2x2 ≤ 8

5x1 + 2x2 ≤ 16
x ≥ 0.

Solution: Starring with the initial simplex tableau and applying simplex method,
we get

x1 x2 x3 x4 z
1 2 1 0 0 8
5 2 0 1 0 16
−9 −10 0 0 1 0

(3)
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Applying the operation 1
2
R1 we get

x1 x2 x3 x4 z
1/2 1 1/2 0 0 4
5 2 0 1 0 16
−9 −10 0 0 1 0

(4)

Then applying R2 − 2R1 and R3 + 10R1, we get

x1 x2 x3 x4 z
1/2 1 1/2 0 0 4
4 0 −1 1 0 8
−4 0 5 0 1 40

(5)

Again 1
4
R2 gives

x1 x2 x3 x4 z
1/2 1 1/2 0 0 4
1 0 −1/4 1/4 0 2
−4 0 5 0 1 40

(6)

Then applying R1 − 1
2
R2 and R3 + 4R2, we get

x1 x2 x3 x4 z
0 1 5/8 1/8 0 3
1 0 −1/4 1/4 0 2
0 0 4 1 1 48

(7)

Hence the optimal solution is x1 = 2, x2 = 3 and the maximum value is 48.

5. Solve the following game: Ruby conceals either a Rs. 1 coin or Rs. 2 coin in
her hand; Charm guesses 1 or 2, winning the coin if he guesses the number.

Solution: The matrix corresponding to this game is

A =

(
a b
c d

)
=

(
1 0
0 2

)
. Therefore, it does not have any saddle point, so it is a non-strictly determind
game. Hence the optimal strategies are given by, p∗ = (p∗1, p

∗
2)
t and q∗ = (q∗1, q

∗
2)t,

where

p∗1 =
d− c

(a− b)− (c− d)
=

2

3
,
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p∗2 =
a− b

(a− b)− (c− d)
=

1

3
,

q∗1 =
d− b

(a− b)− (c− d)
=

2

3
,

q∗2 =
a− c

(a− b)− (c− d)
=

1

3
.

6. Prove the existence and uniqueness of minimum norm least square solution to
Ax = b.

Solution: Let A be an m × n matrix and A = UDV t be a singular value
decomposition of A. D = diag(σ1, ..., σr), r = ρ(A). Then the minimum
norm least square solution to Ax = b is given by x̄ = V D+U tb, where D+ =
diag( 1

σ1
, ..., 1

σr
).

||Ax− b||2 = ||UDV tx− b||2 = ||DV tx− U tb||2

. Let y = V tx, c = U tb, then ||y|| = ||x||. Now

minx∈Rn||Ax− b||2 = miny∈Rn||Dy − c||2.

||Dy − c||2 =
r∑
i=1

(σiyi − ci)2 +
∑
i>r

c2i ≥
∑
i>r

c2i

. Define the vector ȳ as follows: the ith entry is ci
σi

if i ≤ r and the ith entry is
0 if i > r. Then

||Dȳ − c||2 =
∑
i>r

c2i ≤ ||Dy − c||2

for all y ∈ Rn. Now

||Dy − c||2 =
∑
i>r

c2i ⇒ yi =
ci
σi
∀i ≤ r ⇒ ||y|| ≥ ||ȳ||.

Hence the proof of existence and uniqueness.

Section II: Answer any two and each question carries 13 marks.

1. (a) Let si be the i-th singular value of A. Prove that si ≤ ||A − B|| for any
matrix B with rank (B) < i (Marks: 7).

Solution: Let A be of order p × q and A = V DU∗ be the singular value
decomposition of A, where D = diag(s1, ..., sr). Let B be a p × q matrix such
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that rank(B) < i. Let ui denote the ith column of U and vi denote the ith
column of V . Let

U1 = [u1, ..., ui, 0, ..., 0]

and
V1 = [v1, ..., vi, 0, ..., 0].

Since rank(V ∗1 BU1) ≤rank(B) ≤ i − 1, there exists c ∈ Cq such that ||c|| = 1,
c ∈span{e1, ..., ei} and

V ∗1 BU1(c) = 0

⇒
i∑

j=1

cj < B(uj), vk >= 0∀1 ≤ k ≤ i

⇒

〈
B(

i∑
j=1

cjuj), vk

〉
= 0, 1 ≤ k ≤ i.

Now let x =
i∑

j=1

cjuj, then B(x) ⊥ vk∀1 ≤ k ≤ i. We know A =
r∑
j=1

sjvju
∗
j .

Then

A(x) =
∑
l,j

slcjvlu
∗
l uj =

i∑
j=1

sjcjvj.

Now

||A(x)−B(x)||2 = ||
i∑

j=1

sjcjvj −
p∑

j=i+1

〈B(x), vj〉 vj||

=
i∑

j=1

|sj|2|cj|2 +

p∑
j=i+1

| 〈B(x), vj〉 vj|2.

Hence
||A(x)−B(x)|| ≥ si.

As x =
i∑

j=1

cjuj and ||c|| = 1, it follows that ||x|| = 1. Hence si ≤ ||A−B||.

(b) For A =

 0 1
2

1
2

1
3

0 2
3

1
3

2
3

0

, use Perron-Frobenius theory to compute limn→∞A
n.

Solution: A is a primitive (since A2 is a positive matrix) and stochastic matrix.
So, 1 is the dominant eigenvalue for A and At as well. Also let u = (1, 1, 1)t

6



and v = (1/4, 3/8, 3/8). Then it is easy to see that A(u) = u and At(v) = v.
We also note that < u, v >= 1. Hence, by perron-Frobenius theory,

lim
n→∞

An = uvt =

 1/4 3/8 3/8
1/4 3/8 3/8
1/4 3/8 3/8

 .

P.T.O
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2. (a) Let A ≥ 0 be a primitive matrix, v and u be positive eigenvectors for A
and At with eigenvalue λ =Spr(A). If utv = 1 and r = Spr(A), prove that
(A
r
)n → vut exponentially (Marks: 6).

Solution: Let M = vut. Note that

utM = utvut = ut

and
M(v) = vutv = v.

Now let W =< u >⊥. For w ∈ W

< u,A(w) >=< At(u), w >= λ < u,w >= 0.

Hence A(w) ∈ W and therefore, W is an invariant subspace for A. Also for
w ∈ W ,

M(w) = vutw = 0.

Let T be an operator such that T (w) = A(w) for w ∈ W and T (u) = 0. Then
Spr(T ) < Spr(A). Let β =Spr(T ) and ε > 0 be such that β + ε < λ. Then we
know that there exists N ∈ N such that

||T n||1/n ≤ β + ε ∀ n ≥ N.

i.e. ||T n|| ≤ (β + ε)n ∀ n ≥ N.

Now for w ∈ W ,

||
(
A

λ

)n
(w)|| =

(
1

λ

)n
||An(w)|| =

(
1

λ

)n
||T n(w)||

≤ 1

λn
||T n||||w|| ≤

(
β + ε

λ

)n
||w||,

which tends to 0 exponentially as n→∞. This implies that
(
A
λ

)n →M = vut

exponentially, since
(
A
λ

)n
(v) = v = M(v).

(b) Let A and B be two matrices such that bij = aij + r. Then show that two
strategy vectors p and q are optimal for A if and only if they are optimal for B
and value of the game B is value of game A plus r.

Solution: Let A and B be m × n matrices. For any p = (p1, ..., pm)t and
q = (q1, ..., qn),

ptBq =
m∑
i=1

n∑
j=1

bijpiqj =
m∑
i=1

n∑
j=1

(aij + r)piqj = ptAq + r.
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Now let p∗ and q∗ be an optimal strategy for B. Then

pBq∗ ≤ v(B) ≤ p∗Bq ∀ p ∈ Rm, q ∈ Rn.

Hence by the calculation above,

pAq∗ + r ≤ v(B) ≤ p∗Aq + r ∀ p ∈ Rm, q ∈ Rn,

equivalently,
pAq∗ ≤ v(B)− r ≤ p∗Aq ∀ p ∈ Rm, q ∈ Rn.

This shows that v(A) = v(B) − r. We have also shown that p∗ and q∗ is also
an optimal strategy for A as well. By a similar argument as above it can also
be shown that an optimal strategy for A is also an optimal strategy for B.

3. (a) Describe and justify a method to avoid anticycling in LP (Marks: 6).

(b) State and prove a necessary and sufficient condition in terms of the matrix
entries for a 2× 2- matrix game to be non-strictly determined.

Solution: Let A =

(
a11 a12
a21 a22

)
be a 2 × 2 matrix corresponding to a matrix

game. The game is non-strictly determind if and only if none of the matrix
entries is a saddle point. We show that if there is a saddle point then the game
is strictly determind, from which the assertion follows. Let a12 be a saddle point.
Then a12 ≤ a11 and a12 ≥ a22. Then et1Aej ≥ a12 for j = 1, 2 and etiAe2 ≤ a12
for i = 1, 2. This shows that v(A) = a12 with e1 and e2 determining an optimal
strategy.

(c) Solve the n× n-game A = In (Marks: 3).

Solution: We claim that p = q = ( 1
n
, ..., 1

n
)t will provide an optimal strategy

for this game. If r = (r1, ..., rn)t is any other vector in Rn with v1 + ...+ vn = 1,
then

ptAv =< p, v >=
1

n
.

Similarly,

vtAq =< v, q >=
1

n
.

This shows that p = q = ( 1
n
, ..., 1

n
)t defines an optimal strategy for this game

and v(A) = v(In) = 1
n
.
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